
Effective
Prompt
Engineering
in 2025
Igor Kupczyński

What is
a
prompt?

Tell me about
privatelink

vs

Explain the benefits
and costs of using
AWS PrivateLink,
describe key
components and
typical use cases

Compare vague with a clear prompt:

Then, prompt engineering is a process of
crafting effective inputs to LLMs to guide
them toward generating useful outputs.

A prompt is the input or question that
you provide to a language model

–

guiding it to generate the desired output–
It is the starting point for interaction
with any LLM

–

Why bother
with prompt
engineering?
Improves output quality
Enables structured output
Allow use of smaller models

Cost comparison May 2025
https://tools.simonwillison.net/llm-
prices

Model
Input (per 1M
tokens)

Output (per 1M
tokens)

GPT4.1 $2.00 $8.00

Mistral Small
3

$0.10 $0.30

Why would we care about smaller
models?

Orders of magnitude lower cost
compared to larger models

–

Compliance through ability to run
models locally

–

Agenda Local models and tools–
Prompt engineering
basics

–

Patterns of prompt
chaining

–

Copilot–
Agentic workflow to
generate code

–

We will start with discussing some of
the basics. This will be useful if you
want to use LLM from within your
app.

The second part is about using LLMs
in the day-to-day coding tasks.

Local
models

We are familiar with the chatbots, main
way of interaction with LLMs.

A chatbot consists of a client and a
server, and we can "unbundle" them, by
using custom clients interactive with the
providers' APIs.

We can run the server's locally.

Finally, LLMs can be integrated with
existing applications, we will see that with
Copilot / Windsurf demos later on.

llm -m
mistral-
small:24b

ollama serve

ollama pull mistral-
small:24b

llm -m mistral-small:24b
"Hello, how are you?"

Let's look into our tools.

First we have ollama. It's a docker for
LLMs. Ollama is a server and ecosystem.

It can pull and run the models.

We don't have to use the client apps from
the major players, there are many 3rd
party solutions to interact with the model
providers apis. We will use llm, a CLI tool.

Zero-shot vs
few-shot
llm -m mistral-small:24b "Explain what's the
role of SREs in a tech company in one sentence"

Useful examples:
https://simonwillison.net/2024/Oct/21/claude-
artifacts/

llm -m mistral-small:24b 'Classify the
sentiment as positive, negative, neutral.
Follow the format of the provided examples, but
do not print the examples

Examples
{
 "input": "The UX looks awesome, what an
elegant way to bring more signals in",
 "sentiment": "positive"
}
===
{
 "input": "The team felt that there was no
clear escalation process when they needed
support, urgent cases end up having a delayed
response",
 "sentiment": "negative"
}
===
{
 "input": "Last week, we submitted our first
FedRAMP report",
 "sentiment": "neutral"
}
###

Input: I created an Elastic project and I
am trying to upload a document, but I am
getting a 401 error'

Let's start with basic techniques. Zero-shot
means no examples, just asking what you want.
Few-shot means giving a few examples to the
model. Why would you do that?

You may want to show it the output, or the
structure you have in mind. Often, it's more
successful than a detailed description.
The example shows the usefulness of a clear
prompt. Can it still be called zero-shot?
Technically, there's no example, but there's a lot
of details given.

https://simonwillison.net/2024/Oct/21/claude-artifacts/

System prompt
SYSTEM="You are the Chriss Voss, master
negotiator of _Never Split the Difference_
fame"

SYSTEM="You are an introvert pineapple"

llm -m mistral-small:24b --system "$SYSTEM" \
"As an SRE I care deeply about reliability. I
want to make sure that service and product
teams understand the importance of post mortems
and following up on the actions items. I face
pushback. Make the case."

System prompt is a great way to give the model a persona, without specifying it in all the details.
Other usecases:

Some models are trained to put more weight on the system prompt. It's also a natural way to "inject" interactions if you leave the user prompt to the end
user.
Note it's still probabilistic, your users will find a way to "jailbreak".

How does this work?

BTW The output I've got is super nice:
As a Service Reliability Engineer SRE, you're in a unique position to champion the cause of reliability and continuous improvement. When facing
pushback on post-mortems and follow-ups, it's crucial to frame your arguments in a way that resonates with service and product teams. Here’s how
you can make the case using principles from my book Never Split the Difference:
1. Labeling
Start by labeling the resistance in a non-confrontational way. For example:

2. Mirroring
Reflect back what you hear to ensure understanding and build rapport.

3. Accusation Audit
Preemptively address potential objections by acknowledging them upfront.

4. The 90/10 Rule
Focus on the other side’s interests and emotions 90% rather than your own 10%.

5. Bargaining
Offer concessions to make the process more palatable.

6. Black Swan
Introduce an unexpected element that shifts the dynamic.

Provide facts, or context–
Provide guardrails, rules-of-engagements, limits what the model should or shouldn't do–

I'm a doctor from in the civil war era, what were the common toxins at that time I may need to treat ...–

The model APIs usually accept a list of messages, the messages are of different types.–
The most common one is the user prompt.–
System prompt is another option–

"It seems like there's some hesitation around conducting post-mortems."–
"I sense that follow-up actions might be seen as an extra burden."–

"So, it sounds like the team feels that post-mortems are time-consuming and may not add value?"–
"It seems there's a concern about the additional workload from follow-up actions?"–

"I know post-mortems can feel like they take away from development time, but let me explain why they are crucial."–
"I understand that following up on action items might seem like extra work, but it's essential for preventing future issues."–

Emphasize how post-mortems help in understanding root causes and improving reliability.–
Highlight that follow-up actions ensure that lessons learned are implemented, reducing future downtime.–

"Let's start with a shorter, more focused post-mortem format."–
"We can prioritize action items and spread them out over time to avoid overwhelming the team."–

Maintaining
context between
prompts
Message types

Role Description Example

system Sets context, rules, or
persona for the assistant.

"You are a helpful
assistant."

user Represents input from the
end user.

"What is the weather
today?"

assistant Represents responses
generated by the AI
model.

"The weather today
is sunny and warm."

[
 {
 "role": "system",
 "content": "You are a software designer.
Give clear, concise, and practical advice about
software architecture and design. Always
justify your recommendations."
 },
 {
 "role": "user",
 "content": "Hi, I want to build a web app
for tracking personal expenses. What
architecture would you recommend?"
 },
 {
 "role": "assistant",
 "content": "For a personal expense tracker,
I recommend a simple three-tier
architecture:\n\n1. **Frontend**: Use a modern
JavaScript framework like React or Vue.js for a
responsive UI.\n2. **Backend**: Implement a
RESTful API using Node.js with Express or
Python with Flask/Django.\n3. **Database**: Use
a relational database like PostgreSQL for
structured storage.\n\nThis setup is easy to
develop, maintain, and scale for personal or
small team usage. It also separates concerns,
making your codebase cleaner."
 },
 {
 "role": "user",
 "content": "Should I consider using
microservices instead?"
 }
]

Let's describe how does the common
interaction pattern work.

This leads to interesting techniques, such as
putting words in the mouth of the model.

When conversation gets long, it's good to start
afresh. Especially if we are paying per token.

There is no context on the model/server side–
Client sends the full history of messages–
This includes the messages from the model–
Usually, with a message type assistant–

Chain of Thoughs

We can see how Chain-of-Thoughs
helps the model.

BTW I'm really surprised still
confuses models in 2025.

Isn't it
weird
that
CoT
works?

Reasoning, or inference-time compute
LLMs complete the next token with some
probability, the tokens are path dependent.

If the model takes a wrong path, it's hard for it
self correct.
If we give it space, it may use it to check it-self,
or make smaller "jumps" and therefore be more
successful.
Output tokens are expensive though, so it's a
form of scaling. We can spend compute budget
on training the model, but also on inference.

The "reasoning" models, such as OpenAI's
o1 or Deepseek's R1 explicitly spend more
time (tokens, compute) during "inference"
and this produces better results. They are
explicitly trained to spend time in that
phase.

Even a "regular" models can be nudged to
spend some time "reasoning" with a CoTy
prompt.

We can see a bit exaggerated "reasoning"
when we ask Deepseek:

Prompt
chaining
set result1 (llm -m mistral-small:24b
"Generate a random city name")
set result2 (llm -m mistral-small:24b
"Describe a unique landmark for this
city: $result1")
llm -m mistral-small:24b "Write a short
travel guide for $result1, featuring
this landmark: $result2"

We can start chaining multiple
prompts together. And then ...

Patterns
emerge
Anthropic: Building
effective agents

Router

Orchestrator Evaluator-
optimizer

... patterns emerge

https://www.anthropic.com/engineering/building-effective-agents

Diagrams
with
mermaid

Now, let's switch to using LLMs as a
consumer.

Did you notice the hacker on the
image had 6 fingers?

–

AI is terrible with accurate image
generation.

–

Nice trick for diagraming is using
mermaid as the intermediary syntax.

–

Copilot to
understand
the code
Demo

We've seen how Claude one-shot a
tool, but can we get that into our
IDEs?

In state/manager.go :

Generate a mermaid diagram with
the state transitions, and the
conditions that need to be met for
the transition to occur.

Copilot edits
Demo

In AclNodeUpdateCoordinator

The StatusReport message is handled
only during ready state. In busy state it's
stashed just like updates and it may get
backlogged. Add the handling also to the
busy state.

Then, some followups:

Add stashed messages count to the
report

–

DRY–

CodeGen
workflow
Idea honing
Plan of plans
Execution

Ask me one question at a time so we can develop a
thorough, step-by-step spec for this idea. Each
question should build on my previous answers, and our
end goal is to have a detailed specification I can hand
off to a developer or another AI. Let’s do this
iteratively and dig into every relevant detail.
Remember, only one question at a time.

Here’s the idea:

<IDEA>

Now that we’ve wrapped up the brainstorming process,
can you compile our findings into a comprehensive,
developer-ready specification? Include all relevant
requirements, architecture choices, data handling
details, error handling strategies, and a testing plan
so a developer can immediately begin implementation.

SRC

https://harper.blog/2025/02/16/my-llm-codegen-workflow-atm/

Draft a detailed, step-by-step blueprint for building this project.
Then, once you have a solid plan, break it down into small, iterative
chunks that build on each other. Look at these chunks and then go
another round to break it into small steps. Review the results and make
sure that the steps are small enough to be implemented safely with
strong testing, but big enough to move the project forward. Iterate
until you feel that the steps are right sized for this project.

From here you should have the foundation to provide a series of prompts
for a code-generation LLM that will implement each step in a test-driven
manner. Prioritize best practices, incremental progress, and early
testing, ensuring no big jumps in complexity at any stage. Make sure
that each prompt builds on the previous prompts, and ends with wiring
things together. There should be no hanging or orphaned code that isn't
integrated into a previous step.

Make sure and separate each prompt section. Use markdown. Each prompt
should be tagged as text using code tags. The goal is to output prompts,
but context, etc is important as well.

<SPEC>

Can you make a `todo.md` that I can use as a checklist? Be thorough.

Agents are
complex

src: r/cursor

https://www.reddit.com/r/cursor/comments/1joapwk/comment/mkqg8aw/?rdt=54360

Approach LLMs
with the mindset
of
experimentation

I'd like to leave you with this
message:

clear goals–
structured inputs–
iterative refinement–

Resources
Prompt engineering

General

– Everything I'll forget about
prompting LLMs

– Anthropic: Prompt
engineering guide

Simon Willison’s Weblog:–
you can start here
Pragmatic engineer podcast
on building Windsurf

–

Codegen workflow

Not covered

– Using LLMs and Cursor to
become a finisher

– My LLM codegen workflow

– Function calling
– MCP

https://olickel.com/everything-i-know-about-prompting-llms
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/overview
https://simonwillison.net/2024/Dec/19/one-shot-python-tools/
https://zohaib.me/using-llms-and-cursor-for-finishing-projects-productivity/
https://harper.blog/2025/02/16/my-llm-codegen-workflow-atm/
https://til.simonwillison.net/llms/python-react-pattern
https://timkellogg.me/blog/2025/03/06/mcp

